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Abstract

We propose a novel approach to recognise
textual entailment (RTE) following a two-
stage architecture – alignment and deci-
sion – where both stages are based on se-
mantic representations. In the alignment
stage the entailment candidate pairs are
represented and aligned using predicate-
argument structures. In the decision stage,
a Markov Logic Network (MLN) is learnt
using rich relational information from the
alignment stage to predict an entailment
decision. We evaluate this approach us-
ing the RTE Challenge datasets. It shows
comparable results against the average
performance across participating systems,
and very promising results for a subset of
the datasets for which a semantic align-
ment can be found, evidencing the poten-
tial of MLNs for RTE.

1 Introduction

Recognising Textual Entailment (RTE) consists in
deciding, given two text segments, whether the
meaning of one segment (the (H)ypothesis) is en-
tailed from the meaning of the other segment (the
(T)ext) (Dagan and Glickman, 2005).

In order to address the task of RTE, most meth-
ods rely on machine learning algorithms. For ex-
ample, a baseline method proposed by Mehdad
and Magnini (2009) measures the word overlap
between the T-H pairs. An overlap threshold is
computed over the training data, and the test data
is classified based on the learned threshold.

Another approach for RTE is to determine some
kind of alignment between the T-H pairs. Since T
is usually longer, H is aligned to a portion of T,
and the best alignment is used to compute a sim-
ilarity score. A limitation of such approaches is
that instead of recognising a non-entailment, an

alignment that fits an optimisation criterion will
be returned (Marneffe et al., 2006), and thus the
alignment by itself is a poor predictor for non-
entailment. To solve this problem, Marneffe et al.
(2006) divide the RTE task such that the alignment
and the entailment decision are separate processes.
The alignment phase is based on matching graph
representations (i.e. dependency parse trees) of the
T-H pair. For the entailment decision, rules that
strongly suggest implications are designed. A spe-
cific rewrite rule between T and H can be positive
if they represent entailment or negative otherwise.

Except for (Garrette et al., 2011), previous work
using machine learning is based on propositional
representations with simple attribute-value pairs
as features. Garrette et al. (2011) combines first
order logic and statistical methods for RTE. The
approach uses discourse structures to represent T-
H pairs, and a Markov Logic Network (MLN)
model to perform inference in a probabilistic man-
ner over implicativity and factivity, word meaning,
and coreference. A threshold to decide the entail-
ment given the MLN model output is manually set.
Since their phenomena of interest are not present
in the standard RTE datasets, they use handmade
datasets. For other related work in the field, we
refer the reader to (Androutsopoulos and Malaka-
siotis, 2010).

In this paper we describe an RTE approach fol-
lowing a multi-stage architecture. In contrast to
Marneffe et al. (2006), both stages are based on
semantic representations in an attempt to mea-
sure entailment based on the similarity of answers
to the questions Who did what to whom, when,
where, why and how. This is done through shallow
semantic parsing using a Semantic Role Labelling
(SRL) tool. Furthermore, instead of using simple
similarity metrics to predict the entailment deci-
sion, we use rich relational features extracted from
output of the predicate-argument alignment struc-
tures between T-H pairs. These are fed to an MLN



framework, which learns a model to reward pairs
with similar predicates and similar arguments, and
penalise pairs otherwise.

Different from (Garrette et al., 2011), we do
not use a manually set threshold for the entail-
ment decision and we evaluate our method on
the standard RTE Challenge datasets, which are
larger and contain naturally occurring linguistic
constructions that can have an effect on the entail-
ment decision. We compare our approach to base-
lines based on both MLN and standard machine
learning algorithms such as SVM. We also com-
pare our approach against the state of the art re-
sults from past editions of the RTE Challenge. Our
approach shows a competitive performance for all
datasets and promising results for a subset of them.

2 Proposed Approach

Our approach to RTE is based on a two-
stage architecture: i) alignment, where predicate-
argument structures of H and T are aligned; and
ii) entailment decision, where the alignments are
used to extract features (i.e. first order logic pred-
icates) and these are used to build an MLN model.

2.1 Alignment Stage

We represent the T-H pair with SRLs as gener-
ated by SENNA (Collobert et al., 2011) and use
TINE (Rios et al., 2011, 2012) to align any num-
ber of predicates and arguments between T and H.
Instead of simply matching surface forms, TINE
performs a flexible alignment of verb predicates
by measuring (i) how similar their arguments are
(argScore), (ii) and how related the predicates re-
alisations are (lexScore). Both scores are com-
bined as shown in Equation 1 to measure the sim-
ilarity between the two predicates (Av,Bv) from
a pair of sentences (A,B).

sim(Av,Bv) = wlex× lexScore(Av,Bv)

+ warg × argScore(Aarg,Barg) (1)

where wlex and warg are the weights for
each component, argScore(Aarg,Barg) is the
similarity between the arguments, computed
as the cosine distance between the bag-of-
words of the predicates’ arguments Av, Bv.
lexScore(Av,Bv) is the similarity score of the
predicates extracted using Dekang Lin’s thesaurus
(Lin, 1998). The pair of predicates that maximise
Equation 1 produces an alignment with a one-to-
one verb-arguments relation.

2.2 Entailment Decision Stage

In the entailment decision stage we use an MLN
to predict the entailment relation of a given T-H
pair. As an inherently semantic task, RTE should
naturally benefit from knowledge about the rela-
tionships among elements in a text, in particular
to check whether (some of) these relationships are
equivalent in both T and H. It is extremely dif-
ficult to fully capture relational knowledge using
standard propositional formalisms (attribute-value
pairs), as it is hard to predict how many elements
are involved in a relationship (e.g. a compound ar-
gument) or all possible values of these elements,
and it is not possible to represent the sharing of
values across attributes (e.g. the agent of a predi-
cate which is also the object of another predicate).

MLN (Richardson and Domingos, 2006) pro-
vides a natural choice to address this task as it
unifies first order logic and probabilistic graphi-
cal models in a framework that enables the rep-
resentation of rich relational information (such as
syntactic and semantic relations) and inference un-
der uncertainty. This framework learns weights for
first order logic formulas, which are then used to
build Markov networks that can be queried in the
presence of new instances.

The basis for our first order logic formulas are
the alignments produced in the previous stage. At
inference time, an aligned pair with similar situa-
tions and similar participants will likely hold an
entailment relation. An alignment consists of a
pair of verbs and their corresponding arguments.
Several features extracted from these alignments
are used as predicates to build a Markov Network.
We formulate three variants with these predicates:
a baseline model with simpler, non-relational fea-
tures, a relational model, and a variant that adds
back-off strategy to the relational model.

2.2.1 Baseline Model
Our baseline models the entailment decision using
the following non-relational features:

Bag-of-words and Part of Speech (PoS) tags
For each token in the T-H pair we ex-
tract their lemmas and part of speech
tags. We represent it by the predicate
TokenBaseline(pid, token).

Word Overlap For each T-H pair we compute the
number of lemmas shared between the T and
H: Overlap(pid, num).



pid is the id of a T-H pair, token is the lemma or
the PoS tag (each one has a separate predicate),
and num is the overlap score.

We define the following MLN formulas for the
entailment decision:

TokenBaseline(pid,+token)

⇒ Entailment(+d, pid)

Overlap(pid,+n)

⇒ Entailment(+d, pid)

where the predicate Entailment(+d, pid) takes
two possible values for the decision d: true or
false. The + operator indicates that a weight
will be learned for each grounding of the formula.
The entailment decision is a hidden variable in the
MLN model and it is used to query the MLN.

2.2.2 Relational Model
This variant takes advantage of the MLN ability
to handle relational information. New predicates
and formulas that take into consideration the se-
mantic relations between the arguments and verbs
are added to the baseline. The following variables
are created to represent this information: Arg and
V erb. Figure 1 shows the relationships between
these variables in a Markov Network. The vari-
able Back-off is described in Section 2.2.3.

FArg FVerb

Arg Verb

Entailment Back-off

Figure 1: Markov network of our RTE model

The value of Arg is the label given by the SRL
parser for the aligned arguments (e.g. ARG1).
The value of V erb is the lexical realisation of the
verbs, i.e., the aligned verbs themselves. Further-
more, the aligned arguments and the aligned verbs
have features related to them: FArg is the set of
features related to the arguments, and FV erb is
the set of features related to the verbs.

The features for each token of the aligned argu-
ments are as follows:

Lexical Word, lemma and PoS of each token.

Synonyms The 20 most similar words from
Dekang Lin’s thesaurus for each token. A
predicate is created for each similar word.

Hypernyms The complete hypernym tree of each
noun in its first sense in WordNet. A predi-
cate for each hypernym is created.

These argument features are represented by the
following formula:

Token(aid, pid,+tfeature)

∧Arg(aid, vid, pid)⇒ Entailment(+d, pid)

where tfeature takes the value of each of the pre-
vious features, aid and vid are the values of the
Arg and V erb variables

For the aligned verbs, the following features are
extracted:

Bag-of-words VerbNet bowfeature is the lexi-
cal realisation of the classes shared between
the verbs in VerbNet. Looking at the seman-
tic classes of the aligned verbs brings extra
information about how similar they are:

BowV N(vid,+bowfeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Strong Context strfeature compares compo-
nents in Equation 1. If the value of
argScore(Aarg,Barg) is larger than that
of lexScore(Av,Bv), this feature is set to
1, i.e., the similarity of the context of the
aligned verbs is stronger than the relationship
between them; it is 0 otherwise:

StrongCon(vid,+strfeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Similarity VerbNet simvnfeature is set to 1 if
the verbs share at least one class in VerbNet;
0 otherwise:

SimV N(vid,+simvnfeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Similarity VerbOcean simvofeature is 1 if the
verbs have the similar relation as given by
VerbOcean (Chklovski and Pantel, 2004);1 0
otherwise:

SimV O(vid,+simvofeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Similarity Directional simdfeature is 1 if the
verbs hold an entailment relation as given by
the Directional Database (Kotlerman et al.,
2010);2 0 otherwise:

SimD(vid,+simdfeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Token Verbs The predicate contains the lemmas
of the aligned verbs:

TokenV erb(vid,+tokenvfeature)

∧ V erb(vid, pid)⇒ Entailment(+d, pid)

1VerbOcean contains different relations between verbs.
2It contains directional lexical entailment rules.



Finally, the relation between Arg and V erb is
defined by the formula:

Arg(aid, vid, pid) ∧ V erb(vid, pid)

⇒ Entailment(+d, pid)

The formulas sharing variables vid and aid
indicate relationships between the aligned argu-
ments and the aligned verbs, as well as their cor-
responding features given the SRL structure. pid
relates the previous predicates to the decision of an
entailment pair. Many of these formulas can take
up multiple values through multiple groundings
(e.g. the hypernyms of nouns). With these for-
mulas the MLN builds a Markov Network, which
we can be queried for an entailment decision. For
a new T-H pair the model can predict a decision
based on the type of arguments it has, the features
of the words in the arguments, the alignment be-
tween its verbs, and the relations (i.e. features)
between such verbs.

2.2.3 Back-off Model
In the alignment stage the metric cannot align
some of the T-H pairs, mostly because SENNA
does not produce any SRL structure for certain
pairs. In order to be able to make a decision for
these pairs using MLNs, we add a back-off strat-
egy based on the baseline model: whenever a T-
H pair is not aligned we use solely the predicates
computed by the baseline model. Therefore, a new
node – Back-off – is attached to the entailment de-
cision in Figure 1.

3 Experiments and Results

We use the Alchemy3 toolkit and the datasets from
the RTE challenges 1-3 (Dagan and Glickman,
2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007) to evaluate our MLN models. To predict the
entailment decision we take the marginal probabil-
ities that Alchemy outputs for a given query, i.e.,
the Entailment predicate. The query with the
highest probability gives the entailment decision.

For comparison, we developed a common base-
line that computes the overlap of lemmas between
T-H pairs as features and uses SVM algorithm
with a linear kernel for the binary entailment deci-
sion (Mehdad and Magnini, 2009).

Table 1 shows the performance of our baseline
and back-off models against that of the baseline

3http://alchemy.cs.washington.edu/

Algorithm RTE-1 RTE-2 RTE-3
Top system 70% 75% 80%
Avg. systems 55% 59% 61%
SVM 49% 53% 57%
Baseline model 56% 54% 51%
Back-off model 57% 49% 55%

Table 1: Accuracy on RTE 1-3 datasets

SVM. It also shows the top system and the av-
erage accuracy scores for all systems reported in
the RTE challenges. The back-off model achieves
a competitive performance compared to the aver-
age of the participating systems, particularly on
the RTE-1 dataset (Avg. systems). However, its
performance is far from that of the best system
(Top). In an attempt to understand whether this
problem is down to the alignment stage or the en-
tailment decision stage, we selected only the T-H
test pairs for which the TINE finds alignments:
162 pairs (out of 287) for RTE-1, 463 pairs (out
of 800) for RTE-2, and 385 pairs (out of 800) for
RTE-3. We test the relational model on these sub-
sets and compare it against the SVM baseline. Ta-
ble 2 shows the results, where the relational model
clearly outperforms the SVM baseline, by a par-
ticularly large margin on the RTE-3 dataset. This
shows the potential of the relational features and
MLNs for RTE.

Algorithm RTE-1 RTE-2 RTE-3
SVM 50% 51% 56%
Relational model 57% 55% 78%

Table 2: Accuracy on a subset of RTE 1-3 where
an alignment is produced by TINE for T-H

4 Conclusions

Our preliminary results on using a relational statis-
tical learning framework for the RTE task showed
promising results: while a gap in accuracy is ob-
served with respect to the state of the art ap-
proaches, we showed that this is mostly due to the
poor performance of the semantic alignment tool
used in the pre-processing stage. This yields a low
coverage of the relational model, and as a conse-
quence the use of a very simple approach as back-
off for cases of T-H without an alignment. Fu-
ture work will include improvements in the align-
ment stage, such as using syntactic structures as
opposed to semantics as in (de Marneffe et al.,
2007), and the use of better back-off strategies.
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